

St John's C of E Primary Academy Calculation Policy

Author:

Date of issue:

Review date:

J. Bright January 2022 January 2023

Key Personnel Principal: Sarah Cockshott Chair of Governors: M. Ward

Calculation Policy: Addition

Key language: sum, total, parts, and wholes, plus, add, altogether, more, "is equal to" "is the same as".

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	XXXX XXX	
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Column method using base 10 and having to exchange. 41 - 26

Represent the base 10 pictorially, remembering to show the exchange.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11.

Formal colum method. Children must understand what has happened when they have crossed out digits.

Column method using place value counters. 234 – 88

100s

10s

Represent the place value counters pictorially; remembering to show what has been exchanged.

100s 10s 1s 0000

Conceptual variation: different ways to ask children to solve 391 - 186391Raj spent £391, Timmy spent £186.
How much more did Raj spend?391Missing digit calculations391Calculate the difference between 391 and
186-186391186?What is 186 less than 391?0 5

Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. 1 1 1 1 1 1 1	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used $4 \times 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$
Children to represent the concrete manipulatives pictorially.	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $\land 3 \times 3 = 9$ 20 3 $60 + 9 = 6923\frac{\times 3}{69}$

Formal column method with place value counters. 6 x 23 100s 10s 1s 000 000 000 0000 0000 000 000 000 0000 0000 000 0000 000 000 000 000	Children to represent the counters/base 10, pictorially e.g. the image below. $10s 1s 1s 000 000 000 000 000 000 000 00$	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ 1 1
When children start to multiply 3d × 3d and 4d × To get 744 children have solved 6 × 124. To get 2480 they have solved 20 × 124.	2d etc., they should be confident with the abstract:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Conceptual variation: different ways to ask children to solve 6×23

Mai had to swim 23 lengths, 6 times a week.	Find the product of 6 and 23 $6 \times 23 =$	What is the calculation? What is the product?		
How many lengths did she swim in one week?	$= 6 \times 23$	100s	10s	1s
With the counters, prove that 6 x 23 = 138	6 23 × <u>23</u> <u>× 6</u>		00000	

Calculation Policy: Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	6 ÷ 2 = 3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ 12 12 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. -2 -2 -2 -2 -2 -2 -2 -2

 2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. 	Children to represent the lollipop sticks pictorially.	13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
Sharing using place value counters. 42 ÷ 3 = 14	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to	
10s 1s $0 0 0 0 0$ $10s 1s$ $0 0 0 0 0$ $0 0 0 0 0$ $0 0 0 0 0$ $0 0 0 0 0$ $0 0 0 0 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	show the process. $42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14	

Short division using place value counters to group. 615 \div 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters 2544 + 12

1000s	100s	10s	1s	
00	0000	0000	0000	
1000s	100s	10s	1s	
		0000	0000	
	8888			

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

<u>123</u> 5⁶¹15

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$12 \boxed{\begin{array}{c} 0.2 \\ 2544 \\ \underline{24} \\ 1 \end{array}}$$

will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

 $615 \div 5 =$ = 615 ÷ 5 What is the calculation? What is the answer?

100s	10s	1s
		00000 00000 00000

	EYFS/ Year 1	Year 2	Year 3	Year4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column method- regrouping. Using place value counters (up to 3 digits).	Column method- regrouping. (Up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (Up to 3 digits using place value counters)	Column method with regrouping. (Up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon, and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first (up to 4-digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2-digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1- digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2- digit number) Children should exchange into the tenths and hundredths column too