St John's C of E Primary Academy
 Calculation Policy

Author:
Date of issue:
Review date:
Key Personnel
Principal: Sarah Cockshott
Chair of Governors: M. Ward

January 2022
January 2023

Calculation Policy: Addition
Key language: sum, total, parts, and wholes, plus, add, altogether, more, "is equal to" "is the same as".
Concrete
Combining two parts to make a whole (use other
resources too e.g. eggs, shells, teddy bears, cars).

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.

TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$

Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality e.g.
$6+\square=11$
$6+5=5+\square$
$6+5=\square+4$

Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.

$41+8$

TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$

Chidlren to represent the base 10 in a place value chart.

Looking for ways to make 10.

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243
$+368$
611
11

Conceptual variation: different ways to ask children to solve $21+34$

21	34

Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.
Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as

beanbags could be used). | Children to draw the concrete resources they are using |
| :--- |
| and cross out the correct amount. The bar model can |
| also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

00000000 $00000 \longleftarrow ?$

Find the difference between 8 and 5 .
$8-5$, the difference is \square

Children to explore why

$9-6=8-5=7-4$ have the same difference.

Children to present the ten frame pictorially and discuss what they did to make 10 .

Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column method or children could count back 7 .

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

Formal colum method. Children must understand what has happened when they have crossed out digits.

$$
\begin{array}{r}
234 \\
-\quad 88 \\
\hline 6 \\
\hline
\end{array}
$$

Conceptual variation: different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?

Calculate the difference between 391 and 186.

```
\[
l^{--j}=391-186
\]
\[
391
\]
\[
-186
\]
```

What is 186 less than 391?

Missing digit calculations

Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Use arrays to illustrate commutativity counters and other objects can also be used.
$2 \times 5=5 \times 2$

5 lots of 2

Children to represent the arrays pictorially.

Children to be able to use an array to write a range of calculations e.g.

```
\(10=2 \times 5\)
\(5 \times 2=10\)
\(2+2+2+2+2=10\)
\(10=5+5\)
```

Children to be encouraged to show the steps they have taken.
4×15
105
$10 \times 4=40$
$5 \times 4=20$
$40+20=60$
A number line can also be used

Children to represent the concrete manipulatives pictorially.

Children to represent the counters pictorially.

Children to record what it is they are doing to show understanding.

3×23	$3 \times 20=60$
$3 \times 3=9$	
20	3

23

$\times 3$

69

Formal column method with place value counters.
6×23

100s	10s	1s
	88 88 88 88 88	$\begin{aligned} & \hline 000 \\ & 080 \\ & 880 \\ & 808 \\ & 0.8 \\ & \hline 0.8 \\ & \hline \end{aligned}$
1		
100s	10s	1s
\bigcirc	108 88 88 88 88 8	\qquad

Children to represent the counters/base 10, pictorially e.g. the image below.

$6 \times 23=$
23

11

Answer: 3224

						Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & 1=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
23	23	23	23	23	23			100s	10s	1s
?						With the counters, prove that 6×23 $=138$	$\begin{array}{r} 63 \\ \times \quad 23 \quad 6 \\ \hline \end{array}$		$\begin{array}{r} 88 \\ 88 \\ 88 \\ 88 \\ 88 \\ \hline \end{array}$	

Calculation Policy: Division

Key language: share, group, divide, divided by, half.

2d \div 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.

There are 3 whole squares, with 1 left over.

Sharing using place value counters.

$42 \div 3=14$
000000
○○○

10 s	1s

10s	15	$=14$	000000	
10 s	is		10s	1s
\bigcirc	0000		\bigcirc	
\bigcirc	0000		\bigcirc	
-	$\bigcirc \bigcirc \bigcirc$		-	

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.
$13 \div 4$ - 3 remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4 , with 1 left over'

Children to represent the place value counters pictorially.

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

123
 5161^{\prime}

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1 s
-O	0^{000}	0000	0000
1000s	100s	10s	Is
		ए0	णరणত

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds
into groups of 12 which leaves
with 1 hundred.

$$
\begin{array}{r}
1 2 \longdiv { 2 2 } \\
\frac{24}{2544} \\
\hline
\end{array}
$$

1000s	100s	10s	15
			-லアত

After exchanging the hundred, we	
have 14 tens. We can group 12 tens	
into a group of 12 , which leaves 2 tens.	$1 2 \longdiv { 0 2 1 }$
	$\frac{24}{14}$

After exchanging the 2 tens, we	120212 have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remainder. $\frac{24}{14}$ $\frac{12}{24}$ $\frac{24}{0}$

Conceptual variation: different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
$\mathbf{T}_{\mathbf{-}}^{\mathbf{i}}=615 \div 5$

What is the calculation?
What is the answer?

EYFS/ Year 1		Year 2	Year 3	Year4	Year 5	Year 6
	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (Up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (Up to 3 digits using place value counters)	Column method with regrouping. (Up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon, and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 d \times 1 d$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first (up to 4-digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 -digit number)
등	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

